在铸造模具是指铸造成形工艺中,用以成形铸件所使用的模具。铸造模具为铸造工艺配套,主要有重力铸造模具、高压铸造模具(压铸模)、低压铸造模具、挤压铸造模具等。铸造模具是铸造生产中较重要的工艺装备之一,对铸件的质量影响很大。铸造模具技术的提高,将对提高铸件质量,发展新型铸件,提高近净加工水平有重要意义。铸造模具技术的进步,将为汽车、电力、船舶、轨道交通、航空航天等我国支柱性产业提供较多、复杂、的铸件,推动我国制造业整体水平的提升。
根据浇注系统型制的不同可将铸造模具分为三类:
一、大水口模具:流道及浇口在分模线上,与产品在开模时一起脱模,设计简单,容易加工,成本较低,所以较多人采用大水口系统作业。
二、细水口模具:流道及浇口不在分模线上,一般直接在产品上,所以要设计多一组水口分模线,设计较为复杂,加工较困难,一般要视产品要求而选用细水口系统。
三、热流道模具:此类模具结构与细水口大体相同,其大区别是流道处于一个或多个有恒温的热流道板及热唧嘴里,无冷料脱模,流道及浇口直接在产品上,所以流道不需要脱模,此系统又称为无水口系统,可节省原材料,适用于原材料较贵、制品要求较高的情况,设计及加工困难,模具成本较高。热流道系统,又称热浇道系统,主要由热浇口套,热浇道板,温控电箱构成。我们常见的热流道系统有单点热浇口和多点热浇口二种形式。单点热浇口是用单一热浇口套直接把熔融塑料射入型腔,它适用单一腔单一浇口的塑料模具;多点热浇口是通过热浇道板把熔融料分枝到各分热浇口套中再进入到型腔,它适用于单腔多点入料或多腔模具。
铸造模具研磨运动的基本要求:
一、研磨运动应根据不同的研磨工艺要求,具体选取佳运动速度。例如,当研磨细长的大尺寸工件时,需要选取低速研磨:而研磨小尺寸或低精度工件时,则要选取中速或高速进行研磨,以提高生产速率。
二、整个研磨运动自始至终应力求平稳,铸造模具特别是研磨面积小而细长的工件,较要注意使运动方向的改变缓慢,避免拐小弯,运动方向要尽量偏于工件的长边方向并放慢运动速度。否则会因运动的不平稳造成被研表面的不平,或掉边、掉角等质量弊病。
三、在研磨运动中,研具与工件之间应处于弹性浮动状态,而不应是强制的限位状态。这样可以使工件与研具表面能够较好地接触,铸造模具把铸造模具表面的几何形状准确地传递给工件,从而不受研磨机床精度的过多影响。
四、研磨运动应工件均匀地接触研具的全部表面。这样可使研具表面均匀受载、均匀磨损,因而能长期地保持研具本身的表面精度。
五、铸造模具研磨运动应工件受到均匀研磨,即被研工件表面上每一点的研磨量均应相同。这对于工件的几何形状精度和尺寸均匀性来说是至关重要的。
六、研磨运动应使运动轨迹不断并有规律地改变方向,避免过早地出现重复。这样可使工件表面上的无数切削条痕能有规律地相互交错抵消,铸造模具即越研越平滑,从而达到提高工件表面质量的目的。
铸造模具生产实际中尽管有许多减少误差的方法和措施。但从或减少误差的技术上看。可将它们分成两大类。即:
一、误差补偿技术。指在现存的原始误差条件下。通过分析、测量。进而建立数学模型。并以这些原始误差为依据。人为地在工艺系统中引入一个附加的误差源。使之与工艺系统原有的误差相抵消。以减少或零件的加工误差。从提高加工精度考虑。铸造模具在现有工艺系统条件下。误差补偿技术是一种行之的方法。特别是借助计算机辅助技术。可达到很好的实际效果。
二、误差预防技术。指减小原始误差或减少原始误差的影响。亦即减少误差源或改变误差源与加工误差之间的数量转换关系。但实践与分析表明。铸造模具精度要求高于某一程度后。利用误差预防技术来提高加工精度所花费的成本将呈指数规律的增长。